ENGINEERING DIAGNOSTICS, LLC. CALCULATION COVER SHEET

Project Name:	Performed By:	Date:
Commerce Bank Building Columbia	Campion	7-25-24
Project Number: F29-5077-K02	Checked By:	Date:

Calculation Package No.:

Scope: <u>Design parapet masonry wall with reinforced CMU wall, use 8" CMU with</u> partially grouted and reinforced with #4 at 32 inches on center reinforced of cell, maximum parapet wall height 6'-6".

	DE BAT
	State of Hissory
Conclusions: Wall design OK.	TERRY A
	NUMBER
	E-20900
	CFESSIO MUNIT
Hand Calculations/Computer Analysis	7/26/24

(File Name: _____)

CHECKLIST

Incl.	N/A		Incl.	N/A	Loading
Х		Diagrams			Dead
		Dimensions			Live
		Assumptions			Self Weight
		Codes	Х		Wind/Snow
Х		Product Data			Thermal
		Equation Sources			Shrinkage/Creep
		Cost Sources			Settlement
		Quantity Take-off			Test

Variables/Boundary Conditions:

Result:

COMMERCE	BANK COL	UMBIA WIN	ID LOAD AN	ID CMU CELI	REINFORC	EMENT DEV	ELOPMENT			
COMMERCE	BANK COL	UMBIA WIN	ID ON PARA	PET WALL						
7/25/2024										
ASCE 7-16		IBC 2018		BASIC WINI	SPEED 120) MPH				
Р	=	0.00256	Kz	Kzt	Kd	Ке	V^2	Qz		
		0.00256	0.7	1	0.85	1	120	21.93408	PSF	
			NOTE: ADD	DING BOTH V	VINDWARD	AND LEEW	ARD CREAT	ES LARGER		
WINDWARD) GCf	1.5	PRESSURE	THAN EITHE	R INDIVIDU	AL GCf				
LEEWARD G	Cf	1								
				DESING						
		Qz	GCf	PRESSURE						
		21.93408	1.5	33	PSF					
HILTI HY 200) ADHESIVE	BAR DEVEL	OPMENT LE	INGTH						
F'c	4,000 PSI									
	,									
FROM ELE	EMASONR	Y SOFTW	ARE							
ANALYSIS	DEMAND	FLEXURA	4L		NOTE: RAT	IO BASED C	CMU STREN	GTH OR		
MAXIMUM	DEMAND	ΦMn/Mu		0.4	REINFORCI	EMENT STR				
FROM HILTI	HY 200 AD	HESIVE DAT	A							
MAXIMUM	BOND LOAD	O UNCRACK	ED							
CONCRETE #	#4 EMBED 6)")		6,900	LB					
FROM HILTI	HY 200 AD	HESIVE DAT	A							
MAXIMUM	DESIGN STR	RENGTH OF	#4 BAR	17,000	LB					
MAXIMUM	BAR TENSIL	E LOAD								
	BAR	BOND LOA	D							
	DESIGN	(DEMAND	RATIO X	DEMAND/						
DEMAND	STRENGT	BAR DESIG	N	PROVIDED						
RATIO	ΗΦΝ	STRENGTH)	RATIO						
0.4	17,000	6,800		0.99	ОК					

Wall 1

Masonry Wall Design Calculations

- ✓ 0.001 Deflection (TMS)
- ✓ 0.001 Deflection (IBC) $1D + 0.6Wind_{C\&C+Wall}$

1.4D

Prescriptive Checks \checkmark 1.000 Vert Area

0.267 Vert Spacing

0.000 Deflection (Drift)

- 1.000 Horz Area
- 0.067 Horz Spacing

Wall 1

Loads on the Wall

copping unit [Source: Dead]

wind [Source: WindCnCPositiveOnWall]

Moment (ft·k)

Axial Force (k)

Out-of-Plane Design Calculations for Combination 1.4D

Load Combination: 1.4D

Wall weight: For this partially grouted wall, the average volume of masonry per cell is calculated as 265.06 in³ based on 32 in grout spacing. Given a masonry density of 130 lb/ft³, the average weight per face of wall is 44.87 psf and the weight per length for this wall is 321.55 lb/ft (all unfactored values).

Factored wall weight = 62.81 psf.

	Per-Length Axial Force (lb/ft)	Per-Length Out-of-Plane Shear (lb/ft)	Per-Length Out-of-Plane Moment (ft·k/ft)	Total Wall Axial Force (k)	Total Wall Out-of-Plane Shear (k)	Total Wall Out-of-Plane Moment (ft·k)	Total Wall Out-of-Plane P-δ Moment (ft·k)	Total Wall Out-of-Plane Mag. Moment (ft·k)
7.17 ft from base	0 lb/ft	0 lb/ft	0 ft·k/ft	0 k	0 k	0 ft·k	N/A	N/A
0.67 ft from base	408.29 lb/ft	0 lb/ft	0 ft·k/ft	4.9 k	0 k	0 ft·k	N/A	N/A
0.33 ft from base	429.23 lb/ft	0 lb/ft	0 ft·k/ft	5.15 k	0 k	0 ft·k	0 ft·k	0 ft·k
0 ft from base	450.17 lb/ft	0 lb/ft	0 ft·k/ft	5.4 k	0 k	0 ft·k	N/A	N/A

Secondary Moments

The strength design provisions of TMS 402 require consideration of a secondary moment. Both P-Delta and moment magnifier options are given. The P-delta approach may be used under some conditions and the moment magnifier may be used under all conditions. Both are calculated here for perspective, but per user option the value used for design will be that from the moment magnifier approach.

Cracking Moment

The distance from the neutral axis to the extreme tension fiber $^{\prime}c_{t}^{\prime}$ is half the wall thickness: 3.81 in.

$$S_n = I_n/c_t = (4,242.98 \text{ in}^4)/(3.81 \text{ in}) = 1,112.91 \text{ in}^3$$

f_= 87.5 psi

 $M_{cr} = S_n f_r = (1,112.91 \text{ in}^3)(87.5 \text{ psi}) = 8.11 \text{ ft}^{\cdot} \text{k}$

[NCMA TEK note 14-4B (2008), p. 3]

Secondary Moment Calculation (At Midspan)

Note that the I_{cr} value used here is interpolated from the values in the Section Analysis calculations based on the axial force at this location.

P-Delta

Because $M_{\rm u1}$ < $M_{\rm cr}$, $M_{\rm u}$ is calculated by:

$$M_{u} = \frac{M_{u1}}{1 - \frac{5P_{u}h^{2}}{48E_{m}I_{n}}} = \frac{((0 \text{ ft} \cdot \text{k}))}{(1 - \frac{(5(5.15 \text{ k})(0.67 \text{ ft})^{2})}{(48(1,215,000 \text{ psi})(4,242.98 \text{ in}^{4}))})} = 0 \text{ ft} \cdot \text{k}$$

[Masonry Designers Guide 2016, Eqn 12.4-23 (substituting $M_{\rm u1}$ for first order moment expression)]

Moment Magnifier

Because $M_{u1} < M_{cr}$, $I_{eff} = 0.75I_n = 0.75(4,242.98 \text{ in}^4) = 3,182.23 \text{ in}^4$.

Wall 1

 $P_{e} = \frac{\pi^{2} E_{m} I_{eff}}{h^{2}} = \left(\frac{\left((3.1416)^{2} (1,215,000 \text{ psi}) (3,182.23 \text{ in}^{4}) \right)}{(0.67 \text{ ft})^{2}} \right) = 596,249.39 \text{ k}$ [TMS 402-16 Section 9.3.5.4.3, Equation 9-29] $\frac{1}{1 + R} = \frac{1}{\left(- \frac{1}{1 + R} - \frac{1}$

$$\Psi^{\mu} 1 - \frac{P_{u}}{P_{e}} = \left(1 - \left(\frac{(5.15 \text{ k})}{(596,249.39 \text{ k})} \right) \right)^{\mu} = 1$$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-28]

 $M_{u} = \psi M_{u0} = (1)(0 \text{ ft} \cdot k) = 0 \text{ ft} \cdot k$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-27]

Out-of-Plane Strength Checks: Combination 1.4D

Design forces for this load combination:

- P_u @ top = 4.9 k
- P_u @ mid-span = 5.15 k
- P_u @ base = 5.4 k
- $V_u = 0 k$
- M_u @ top = 0 ft·k
- M_u @ mid-span = 0 ft·k (from moment magnifier; first-order moment was 0 ft·k)

Moment Check @ Axial Load Application Point

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (4.9 k) and thus P_n = 5.44 k. The associated M_n (22.99 ft k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 4.9 k, the interaction diagram gives a moment capacity of 20.71 ft k.

 $\checkmark \phi M_n ≥ M_u$...utilization ratio 0

Compression area = 0.5 ft^2 . Depth of compression zone = 0.5 in.

Moment Check @ Mid-span

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (5.15 k) and thus P_n = 5.72 k. The associated M_n (23.08 ft·k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 5.15 k, the interaction diagram gives a moment capacity of 20.76 ft $\,k.$

 $✓ \phi M_n ≥ M_u$...utilization ratio 0

Compression area = 0.5 ft^2 . Depth of compression zone = 0.5 in.

Axial Stress Check

 $\sigma_p = P_u/A_g = (5.4 \text{ k})/(7.63 \text{ ft}^2) = 4.92 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2] $\sigma_{pmax} = 0.2f'_m = 0.2(1,350 \text{ psi}) = 270 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2]

Wall 1

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0.018

Axial Stress Check with Slender Wall

 $\frac{h}{t} = \frac{(0.67 \text{ ft})}{(7.63 \text{ in})} = 1.05$

[TMS 402-16 Section 9.3.5.4.2]

Slenderness ratio does not exceed 30; check does not apply

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0

Axial Force Check

 $\frac{h}{r} = \frac{(0.67 \text{ ft})}{(2.65 \text{ in})} = 3.02$

[TMS 402-16 Section 9.3.4.1.1]

$$P_{n} = 0.80 \left[0.80 f'_{m} (A_{n} - A_{st}) + f_{y} A_{st} \right] \left[1 - \left(\frac{h}{140r} \right)^{2} \right] = 0.80 \left(0.80 \left(1,350 \text{ psi} \right) \right) \left((4.21 \text{ ft}^{2}) - (0 \text{ in}^{2}) \right) + (60,000 \text{ psi}) (0 \text{ in}^{2}) \right) \left(1 - \left(\frac{(0.67 \text{ ft})}{(140 (2.65 \text{ in}))} \right)^{2} \right) = 523.34 \text{ k}$$

[TMS 402-16 Section 9.1.3, 9.1.4.4]

$P_{u} = 5.15 \text{ k}$

 $\checkmark \ \ \phi P_n \geq P_u \qquad ...utilization \ ratio \ 0.011$

Shear Check

There is no applied shear force in this load combination; check passes.

 $\checkmark \ \ \varphi V_n \geq V_u \qquad ...utilization \ ratio \ 0$

Maximum Reinforcement Check

Maximum reinforcement is checked based on the provisions of TMS 402-16 9.3.3.2.

$$\frac{M_{u}}{V_{u}d_{v}} = \frac{(0 \text{ ft} \cdot k)}{((0 \text{ k})(7.63 \text{ in}))} = 0$$

[TMS 402-16 Section 9.3.4.1.2]

Because this ratio does not exceed 1.0 and R <= 1.5, there is no limit on flexural tensile reinforcement.

 $\checkmark \quad \epsilon_s \geq \epsilon_{min} \qquad ...utilization ratio 0$

Out-of-Plane Design Calculations for Combination $1.2D + 0.5Wind_{C\&C+Wall}$

Load Combination: $1.2D + 0.5Wind_{C\&C+Wall}$

Wall weight: For this partially grouted wall, the average volume of masonry per cell is calculated as 265.06 in³ based on 32 in grout spacing. Given a masonry density of 130 lb/ft³, the average weight per face of wall is 44.87 psf and the weight per length for this wall is 321.55 lb/ft (all unfactored values).

Factored wall weight = 53.84 psf.

	Per-Length Axial Force (lb/ft)	Per-Length Out-of-Plane Shear (lb/ft)	Per-Length Out-of-Plane Moment (ft·k/ft)	Total Wall Axial Force (k)	Total Wall Out-of-Plane Shear (k)	Total Wall Out-of-Plane Moment (ft·k)	Total Wall Out-of-Plane P-δ Moment (ft·k)	Total Wall Out-of-Plane Mag. Moment (ft·k)
7.17 ft from base	0 lb/ft	0 lb/ft	0 ft·k/ft	0 k	0 k	0 ft·k	N/A	N/A
0.67 ft from base	349.97 lb/ft	-107.25 lb/ft	0.35 ft·k/ft	4.2 k	-1.29 k	4.18 ft·k	N/A	N/A
		528.34 lb/ft	0.35 ft·k/ft	4.2 k	6.34 k	4.18 ft·k	N/A	N/A
0.33 ft from base	367.91 lb/ft	522.84 lb/ft	0.17 ft·k/ft	4.41 k	6.27 k	2.08 ft·k	2.08 ft·k	2.08 ft·k
0 ft from base	385.86 lb/ft	517.34 lb/ft	0 ft·k/ft	4.63 k	6.21 k	0 ft·k	N/A	N/A

Secondary Moments

The strength design provisions of TMS 402 require consideration of a secondary moment. Both P-Delta and moment magnifier options are given. The P-delta approach may be used under some conditions and the moment magnifier may be used under all conditions. Both are calculated here for perspective, but per user option the value used for design will be that from the moment magnifier approach.

Cracking Moment

The distance from the neutral axis to the extreme tension fiber ${}^{\prime}c_{\!\!\!\!\!\!\!\!}'$ is half the wall thickness: 3.81 in.

$$S_n = I_n/c_t = (4,242.98 \text{ in}^4)/(3.81 \text{ in}) = 1,112.91 \text{ in}^3$$

 $M_{cr} = S_n f_r = (1,112.91 \text{ in}^3)(87.5 \text{ psi}) = 8.11 \text{ ft}^{\cdot} \text{k}$

[NCMA TEK note 14-4B (2008), p. 3]

Secondary Moment Calculation (At Midspan)

Note that the I_{cr} value used here is interpolated from the values in the Section Analysis calculations based on the axial force at this location.

P-Delta

Because $M_{u1} < M_{cr}$, M_u is calculated by:

$$M_{u} = \frac{\frac{M_{u1}}{1 - \frac{5P_{u}h^{2}}{48E_{m}I_{n}}} = \frac{((2.08 \text{ ft} \cdot \text{k}))}{(1 - \frac{(5(4.41 \text{ k})(0.67 \text{ ft})^{2})}{(48(1,215,000 \text{ psi})(4,242.98 \text{ in}^{4}))}} = 2.08 \text{ ft} \cdot \text{k}$$

[Masonry Designers Guide 2016, Eqn 12.4-23 (substituting $M_{\rm u1}$ for first order moment expression)]

Moment Magnifier

Because $M_{\rm u1} < M_{\rm cr}$, $I_{\rm eff}$ = 0.75 $I_{\rm n}$ = 0.75(4,242.98 in^4) = 3,182.23 in^4.

Wall 1

 $P_{e} = \frac{\pi^{2} E_{m} I_{eff}}{h^{2}} = \left(\frac{\left((3.1416)^{2} (1,215,000 \text{ psi}) (3,182.23 \text{ in}^{4}) \right)}{(0.67 \text{ ft})^{2}} \right) = 596,249.39 \text{ k}$ [TMS 402-16 Section 9.3.5.4.3, Equation 9-29] $u = \frac{1}{P_{u}} = \frac{1}{\sqrt{1 - (1 + 41 \text{ k})^{2}}} = 1$

$$\Psi = 1 - \frac{P_u}{P_e} = \left(1 - \left(\frac{(4.41 \text{ k})}{(596,249.39 \text{ k})} \right) \right) = 1$$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-28]

 $M_{\mu} = \psi M_{\mu 0} = (1)(2.08 \text{ ft} \cdot \text{k}) = 2.08 \text{ ft} \cdot \text{k}$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-27]

Out-of-Plane Strength Checks: Combination $1.2D + 0.5Wind_{C\&C+Wall}$

Design forces for this load combination:

- P_u @ top = 4.2 k
- P_u @ mid-span = 4.41 k
- P_u @ base = 4.63 k
- V_u = 6.34 k
- M_u @ top = 4.18 ft[·]k
- M_u @ mid-span = 2.08 ft k (from moment magnifier; first-order moment was 2.08 ft k)

Moment Check @ Axial Load Application Point

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (4.2 k) and thus P_n = 4.67 k. The associated M_n (22.78 ft⁻k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 4.2 k, the interaction diagram gives a moment capacity of 20.5 ft k.

 \checkmark ϕ M_n ≥ M_u ...utilization ratio 0.204

Compression area = 0.49 ft². Depth of compression zone = 0.49 in.

Moment Check @ Mid-span

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (4.41 k) and thus P_n = 4.91 k. The associated M_n (22.87 ft k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 4.41 k, the interaction diagram gives a moment capacity of 20.56 ft k.

Axial Stress Check

 $\sigma_p = P_u/A_g = (4.63 \text{ k})/(7.63 \text{ ft}^2) = 4.22 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2] $\sigma_{pmax} = 0.2f'_m = 0.2(1,350 \text{ psi}) = 270 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2]

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0.016

Axial Stress Check with Slender Wall

 $\frac{h}{t} = \frac{(0.67 \text{ ft})}{(7.63 \text{ in})} = 1.05$

[TMS 402-16 Section 9.3.5.4.2]

Slenderness ratio does not exceed 30; check does not apply

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0

Axial Force Check

 $\frac{h}{r} = \frac{(0.67 \text{ ft})}{(2.65 \text{ in})} = 3.02$

$$P_{n} = 0.80 \left[0.80f'_{m} (A_{n} - A_{st}) + f_{y} A_{st} \right] \left[1 - \left(\frac{h}{140r} \right)^{2} \right] = 0.80 \left(0.80 \left(1.350 \text{ psi} \right) \right) \left((4.21 \text{ ft}^{2}) - (0 \text{ in}^{2}) \right) + (60,000 \text{ psi}) (0 \text{ in}^{2}) \right) \left(1 - \left(\frac{(0.67 \text{ ft})}{(140 (2.65 \text{ in}))} \right)^{2} \right) = 523.34 \text{ k}$$

$$[TMS 402-16 \text{ Section } 9.3.4.1.1, Equation 9-15]$$

[TMS 402-16 Section 9.1.3, 9.1.4.4]

 \checkmark ϕ P_n ≥ P_u ...utilization ratio 0.009

Shear Check

The net shear area is taken as the area bounded by the extreme compression fiber and the reinforcement nearest the opposite face, subject to the effective compression width.

$$A_{nv} = 2.1 \, \text{ft}^2$$

Shear capacity due to masonry, conservatively taking M/Vd = 1.0:

$$V_{nm} = [4.0-1.75(1.0)]A_{n}\sqrt{f_{m}} + 0.25P_{u} = (4.0-1.75(1.0))(2.1 \text{ ft}^{2}\sqrt{(1,350 \text{ psi})} + 0.25(4.2 \text{ k}) = 26.1 \text{ k}$$
[TMS 402-16 Section 9.3.4.1.2.1, Equation 9-20 with conservative M/Vd = 1.0]

Wall 1

No reinforcement for out-of-plane shear:

 $V_{ns} = 0 k$

Nominal shear capacity:

$$V_n = (V_{nm} + V_{ns})\gamma_n = ((26.1 \text{ k}) + (0 \text{ k}))(1) = 26.1 \text{ k}$$

[TMS 402-16 Section 9.3.4.1.2, Equation 9-17]

Limited by:

 $V_{n_limit} = (4A_{n}\sqrt{f'_m})_{\gamma_g} = (4(2.1 \text{ ft}^2)\sqrt{(1,350 \text{ psi})})(1) = 44.53 \text{ k}$

[TMS 402-16 Section 9.3.4.1.2, Equation 9-19]

...Limit on V_n does not control

 $\phi_n = \phi_n = (0.8)(26.1 \text{ k}) = 20.88 \text{ k}$

[TMS 402-16 Section 9.1.3, 9.1.4.5]

✓ ϕ V_n ≥ V_u ...utilization ratio 0.304

Maximum Reinforcement Check

Maximum reinforcement is checked based on the provisions of TMS 402-16 9.3.3.2.

$$\frac{M_u}{V_u d_v} = \frac{(4.18 \text{ ft} \cdot \text{k})}{((1.29 \text{ k})(7.63 \text{ in}))} = 5.11$$

[TMS 402-16 Section 9.3.4.1.2]

Wall 1

The code gives the limit on area of reinforcement as that established by an analysis where the maximum tension bar strain is set to a code-mandated extreme strain value. The provision will be enforced by determining the strain corresponding to the actual specified reinforcement and comparing to the code-mandated minimum strain.

The member must be reinforced such that the tensile strain at equilibrium exceeds 1.5 times the yield strain.

$\varepsilon_{\min} = 1.5\varepsilon_{v} = 1.5(0.00207) = 0.0031$

[TMS 402-16 Section 9.3.3.2.1(a)]

The axial load to be used in the analysis is given by the special load combination $D + 0.75L + 0.525Q_E$, which in this case gives 0 k.

The tensile strain that will occur at equilibrium with the current reinforcement is illustrated below:

ε_s= 0.01397

✓ ε_s ≥ ε_{min} ...utilization ratio 0.222

From the analysis, strain in extreme tension bar is 0.0140.

Out-of-Plane Design Calculations for Combination $0.9D + 1Wind_{C\&C+Wall}$

Load Combination: $0.9D + 1Wind_{C\&C+Wall}$

Wall weight: For this partially grouted wall, the average volume of masonry per cell is calculated as 265.06 in³ based on 32 in grout spacing. Given a masonry density of 130 lb/ft³, the average weight per face of wall is 44.87 psf and the weight per length for this wall is 321.55 lb/ft (all unfactored values).

Factored wall weight = 40.38 psf.

	Per-Length Axial Force (lb/ft)	Per-Length Out-of-Plane Shear (lb/ft)	Per-Length Out-of-Plane Moment (ft·k/ft)	Total Wall Axial Force (k)	Total Wall Out-of-Plane Shear (k)	Total Wall Out-of-Plane Moment (ft·k)	Total Wall Out-of-Plane P-δ Moment (ft·k)	Total Wall Out-of-Plane Mag. Moment (ft·k)
7.17 ft from base	0 lb/ft	0 lb/ft	0 ft·k/ft	0 k	0 k	0 ft·k	N/A	N/A
0.67 ft from base	262.47 lb/ft	-214.5 lb/ft	0.7 ft·k/ft	3.15 k	-2.57 k	8.37 ft·k	N/A	N/A
		1,056.69 lb/ft	0.7 ft·k/ft	3.15 k	12.68 k	8.37 ft·k	N/A	N/A
0.33 ft from base	275.93 lb/ft	1,045.69 lb/ft	0.35 ft·k/ft	3.31 k	12.55 k	4.16 ft·k	4.16 ft·k	4.16 ft·k
0 ft from base	289.39 lb/ft	1,034.69 lb/ft	0 ft·k/ft	3.47 k	12.42 k	0 ft·k	N/A	N/A

Secondary Moments

The strength design provisions of TMS 402 require consideration of a secondary moment. Both P-Delta and moment magnifier options are given. The P-delta approach may be used under some conditions and the moment magnifier may be used under all conditions. Both are calculated here for perspective, but per user option the value used for design will be that from the moment magnifier approach.

Cracking Moment

The distance from the neutral axis to the extreme tension fiber $^{\prime}c_{t}^{\prime}$ is half the wall thickness: 3.81 in.

$$S_n = I_n/c_t = (4,242.98 \text{ in}^4)/(3.81 \text{ in}) = 1,112.91 \text{ in}^3$$

 $M_{cr} = S_n f_r = (1,112.91 \text{ in}^3)(87.5 \text{ psi}) = 8.11 \text{ ft}^{\cdot} \text{k}$

[NCMA TEK note 14-4B (2008), p. 3]

Secondary Moment Calculation (At Midspan)

Note that the I_{cr} value used here is interpolated from the values in the Section Analysis calculations based on the axial force at this location.

P-Delta

Because $M_{u1} < M_{cr}$, M_u is calculated by:

$$M_{u} = \frac{\frac{M_{u1}}{1 - \frac{5P_{u}h^{2}}{48E_{m}I_{n}}} = \frac{((4.16 \text{ ft} \cdot \text{k}))}{(1 - \frac{(5(3.31 \text{ k})(0.67 \text{ ft})^{2})}{(48(1,215,000 \text{ psi})(4,242.98 \text{ in}^{4}))}} = 4.16 \text{ ft} \cdot \text{k}$$

[Masonry Designers Guide 2016, Eqn 12.4-23 (substituting M_{u1} for first order moment expression)]

Moment Magnifier

Because $M_{\rm u1} < M_{\rm cr}$, $I_{\rm eff}$ = 0.75 $I_{\rm n}$ = 0.75(4,242.98 in^4) = 3,182.23 in^4.

Wall 1

 $P_{e} = \frac{\pi^{2} E_{m} I_{eff}}{h^{2}} = \left(\frac{\left((3.1416)^{2} (1,215,000 \text{ psi}) (3,182.23 \text{ in}^{4}) \right)}{(0.67 \text{ ft})^{2}} \right) = 596,249.39 \text{ k}$ [TMS 402-16 Section 9.3.5.4.3, Equation 9-29] $= \frac{1}{\sqrt{1 - \left((-3.21 \text{ k}) - 1 \right)^{2}}} = 1$

$$\Psi = \frac{P_{u}}{1 - \frac{P_{u}}{P_{e}}} \left(1 - \left(\frac{(3.31 \text{ k})}{(596, 249.39 \text{ k})} \right) \right) = 1$$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-28]

 $M_{u} = \sqrt{M_{u0}} = (1)(4.16 \text{ ft} \cdot \text{k}) = 4.16 \text{ ft} \cdot \text{k}$

[TMS 402-16 Section 9.3.5.4.3, Equation 9-27]

Out-of-Plane Strength Checks: Combination 0.9D + 1Wind_{C&C+Wall}

Design forces for this load combination:

- P_u @ top = 3.15 k
- P_u @ mid-span = 3.31 k
- P_u @ base = 3.47 k
- V_u = 12.68 k
- M_u @ top = 8.37 ft[.]k
- M_u @ mid-span = 4.16 ft k (from moment magnifier; first-order moment was 4.16 ft k)

Moment Check @ Axial Load Application Point

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (3.15 k) and thus P_n = 3.5 k. The associated M_n (22.44 ft·k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 3.15 k, the interaction diagram gives a moment capacity of 20.2 ft k.

 $\checkmark \ \phi M_n \geq M_u \qquad ...utilization ratio 0.414$

Compression area = 0.48 ft². Depth of compression zone = 0.48 in.

Moment Check @ Mid-span

The moment capacity is determined by considering the point on the interaction diagram where ϕP_n is equal to the axial load at this section (3.31 k) and thus P_n = 3.68 k. The associated M_n (22.5 ft·k) is multiplied by ϕ to obtain design moment capacity.

At an axial load of 3.31 k, the interaction diagram gives a moment capacity of 20.24 ft k.

Axial Stress Check

 $\sigma_{p} = P_{u}/A_{g} = (3.47 \text{ k})/(7.63 \text{ ft}^{2}) = 3.16 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2] $\sigma_{pmax} = 0.2f'_{m} = 0.2(1,350 \text{ psi}) = 270 \text{ psi}$ [TMS 402-16 Section 9.3.5.4.2]

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0.012

Axial Stress Check with Slender Wall

 $\frac{h}{t} = \frac{(0.67 \text{ ft})}{(7.63 \text{ in})} = 1.05$

[TMS 402-16 Section 9.3.5.4.2]

Slenderness ratio does not exceed 30; check does not apply

✓ σ_{Pmax} ≥ σ_P ...utilization ratio 0

Axial Force Check

 $\frac{h}{r} = \frac{(0.67 \text{ ft})}{(2.65 \text{ in})} = 3.02$

$$P_{n} = 0.80 \left[0.80f'_{m} (A_{n} - A_{st}) + f_{y} A_{st} \right] \left[1 - \left(\frac{h}{140r} \right)^{2} \right] = 0.80 \left(0.80 \left(1.350 \text{ psi} \right) \left((4.21 \text{ ft}^{2}) - (0 \text{ in}^{2}) \right) + (60,000 \text{ psi} \right) \left(0 \text{ in}^{2} \right) \right) \left(1 - \left(\frac{(0.67 \text{ ft})}{(140 (2.65 \text{ in}))} \right)^{2} \right) = 523.34 \text{ k}$$

$$[TMS 402-16 \text{ Section } 9.3.4.1.1, Equation 9-15]$$

[TMS 402-16 Section 9.1.3, 9.1.4.4]

✓ $\phi P_n ≥ P_u$...utilization ratio 0.007

Shear Check

The net shear area is taken as the area bounded by the extreme compression fiber and the reinforcement nearest the opposite face, subject to the effective compression width.

$$A_{nv} = 2.1 \, \text{ft}^2$$

Shear capacity due to masonry, conservatively taking M/Vd = 1.0:

$$V_{nm} = [4.0-1.75(1.0)]A_{n}\sqrt{f_{m}} + 0.25P_{u} = (4.0-1.75(1.0))(2.1 \text{ ft}^{2})\sqrt{(1,350 \text{ psi})} + 0.25(3.15 \text{ k}) = 25.84 \text{ k}$$
[TMS 402-16 Section 9.3.4.1.2.1, Equation 9-20 with conservative M/Vd = 1.0]

Wall 1

No reinforcement for out-of-plane shear:

 $V_{ns} = 0 k$

Nominal shear capacity:

$$V_{n} = (V_{nm} + V_{ns})\gamma_{n} = ((25.84 \text{ k}) + (0 \text{ k}))(1) = 25.84 \text{ k}$$

[TMS 402-16 Section 9.3.4.1.2, Equation 9-17]

Limited by:

 $V_{n_limit} = (4A_{n}\sqrt{f'_{m}})\gamma_{g} = (4(2.1 \text{ ft}^{2})\sqrt{(1,350 \text{ psi})})(1) = 44.53 \text{ k}$

[TMS 402-16 Section 9.3.4.1.2, Equation 9-19]

...Limit on V_n does not control

 $\phi_n = \phi_n = (0.8)(25.84 \text{ k}) = 20.67 \text{ k}$

[TMS 402-16 Section 9.1.3, 9.1.4.5]

✓ ϕ V_n ≥ V_u ...utilization ratio 0.613

Maximum Reinforcement Check

Maximum reinforcement is checked based on the provisions of TMS 402-16 9.3.3.2.

$$\frac{M_{u}}{V_{u}d_{v}} = \frac{(8.37 \text{ ft} \cdot \text{k})}{((2.57 \text{ k})(7.63 \text{ in}))} = 5.11$$

[TMS 402-16 Section 9.3.4.1.2]

Wall 1

The code gives the limit on area of reinforcement as that established by an analysis where the maximum tension bar strain is set to a code-mandated extreme strain value. The provision will be enforced by determining the strain corresponding to the actual specified reinforcement and comparing to the code-mandated minimum strain.

The member must be reinforced such that the tensile strain at equilibrium exceeds 1.5 times the yield strain.

$\varepsilon_{\min} = 1.5\varepsilon_{v} = 1.5(0.00207) = 0.0031$

[TMS 402-16 Section 9.3.3.2.1(a)]

The axial load to be used in the analysis is given by the special load combination $D + 0.75L + 0.525Q_E$, which in this case gives 0 k.

The tensile strain that will occur at equilibrium with the current reinforcement is illustrated below:

ε_= 0.01397

✓ ε_s ≥ ε_{min} ...utilization ratio 0.222

From the analysis, strain in extreme tension bar is 0.0140.

Out-of-Plane Service Checks for Combination 1D + $0.6Wind_{C\&C+Wall}$

Out-of-Plane Service Checks: Combination $1D + 0.6Wind_{C\&C+Wall}$

Design forces for this load combination:

- P @ mid-span = 3.68 k
- M @ mid-span = 2.5 ft·k

Deflection Check per TMS 402

The distance from the neutral axis to the extreme tension fiber $^{\prime}c_{t}^{\prime}$ is half the wall thickness: 3.81 in.

$$S_n = I_n/c_t = (4,242.98 \text{ in}^4)/(3.81 \text{ in}) = 1,112.91 \text{ in}^3$$

 $M_{cr} = S_n f_r = (1,112.91 \text{ in}^3)(87.5 \text{ psi}) = 8.11 \text{ ft}^{\cdot} \text{k}$

[NCMA TEK note 14-4B (2008), p. 3]

 $E_m = 900f'_m = 900(1,350 \text{ psi}) = 1,215,000 \text{ psi}$

[TMS 402-16 Section 4.2.2]

$$c = \frac{A_{s}f_{y} + P_{u}}{0.64f_{m}b} = \frac{((60,000 \text{ in}^{2})(1.2 \text{ psi}) + (3.68 \text{ k}))}{(0.64(1,350 \text{ psi})(144 \text{ in}))} = 0.61 \text{ in}$$

[TMS 402-16 Section 9.3.5.4.5, Equation 9-31]

$$n = \frac{E_{s}}{E_{m}} = \frac{(29,000,000 \text{ psi})}{(1,215,000 \text{ psi})} = 23.87$$

$$I_{cr} = n \left(A_{s} + \frac{P_{u}t_{sp}}{f_{y}2d}\right) (d-c)^{2} + b\frac{c^{3}}{3} = (23.87) \left((1.2 \text{ in}^{2}) + \left(\frac{(3.68 \text{ k})}{(60,000 \text{ psi})}\right) \left(\frac{(7.63 \text{ in})}{(2(3.81 \text{ in}))}\right)\right) ((3.81 \text{ in}) - (0.61 \text{ in}))^{2} + \left((144 \text{ in})\frac{(0.61 \text{ in})^{3}}{3}\right) = 319.9 \text{ in}^{4}$$

[TMS 402-16 Section 9.3.5.4.5, Equation 9-30]

P-delta analysis converged to a deflection of 0 in after 2 iterations. Note that the service moment shown in the equation for the final iteration below (2.5 ft k) is typically larger than the first-order service moment (2.5 ft k) due to the addition of second order moment resulting from the deflection.

$$\delta_{s} = \frac{5M_{ser}h^{2}}{48E_{m}I_{n}} = \frac{(5(2.5 \text{ ft} \cdot \text{k})(0.67 \text{ ft})^{2})}{(48(1,215,000 \text{ psi})(4,242.98 \text{ in}^{4}))} = 0 \text{ in}$$

[TMS 402-16 Section 9.3.5.5.1, Equation 9-25 modified for service conditions]

$$\delta_{\text{max}} = 0.007 \text{h} = 0.007 (0.67 \text{ ft}) = 0.06 \text{ in}$$

[TMS 402-16 Section 9.3.5.5, Equation 9-32]

✓ δ_{max} ≥ δ_sutilization ratio 0.001

Deflection Check per IBC

The service moment due only to Components and Cladding wind pressures is 5.02 ft⁻k.

Per IBC Table 1604.3 footnote (f), the wind pressure can be taken as 42% of this value for this check. The resulting value is:

$$M_{ser} = 2.11 \text{ ft} \cdot \text{k}$$

$$\delta_{s} = \frac{5M_{ser}h^{2}}{48E_{m}I_{n}} = \frac{(5(2.11 \text{ ft} \cdot \text{k})(0.67 \text{ ft})^{2})}{(48(1,215,000 \text{ psi})(4,242.98 \text{ in}^{4}))} = 0 \text{ in}$$
[TMS 402-16 Section 9.3.5.5.1, Equation 9-25 modified for service conditions]
$$\delta_{max} = \frac{h}{240} = \frac{0.67 \text{ ft}}{240} = 0 \text{ ft}$$
[IBC Section 1604.3.1, Footnote f to Table 1604.3]

✓ δ_{max} ≥ δ_s ...utilization ratio 0.001

In-Plane Design Calculations for Combination 1.4D

Load Combination: 1.4D

Factored wall weight per height of wall = 753.77 lb/ft.Factored total wall weight = 5.4 k.

In-Plane Strength Checks: Combination 1.4D

Design forces for this load combination:

- P_u = 5.4 k
- $V_u = 0 k$
- M_u = 0 ft·k

Moment Check

The moment capacity is determined by considering the point on the interaction diagram where φP_n is equal to the axial load at this section (5.4 k) and thus P_n = 6 k. The associated M_n (442.27 ft·k) is multiplied by φ to obtain design moment capacity.

At an axial load of 5.4 k, the interaction diagram gives a moment capacity of 397.8 ft $\!\!\!\! k.$

Shear Check

There is no applied shear force in this load combination; check passes.

✓ ϕ V_n ≥ V_u ...utilization ratio 0

Shear Friction Check

There is no applied shear force in this load combination; check passes.

 $\checkmark \phi V_n \ge V_u$...utilization ratio 0

Maximum Reinforcement Check

Maximum reinforcement is checked based on the provisions of TMS 402-16 9.3.3.2.

$$\frac{M_{u}}{V_{u}d_{v}} = \frac{(0 \text{ ft} \cdot k)}{((0 \text{ k})(144 \text{ in}))} = 0$$

[TMS 402-16 Section 9.3.4.1.2]

The code gives the limit on area of reinforcement as that established by an analysis where the maximum tension bar strain is set to a code-mandated extreme strain value. The provision will be enforced by determining the strain corresponding to the actual specified reinforcement and comparing to the code-mandated minimum strain.

For a Ordinary Reinforced Shear Wall: The member must be reinforced such that the tensile strain at equilibrium exceeds 1.5 times the yield strain.

Wall 1

$\varepsilon_{min} = 1.5\varepsilon_y = 1.5(0.00207) = 0.0031$

[TMS 402-16 Section 9.3.3.2.1(a)]

The axial load to be used in the analysis is given by the special load combination $D + 0.75L + 0.525Q_{E_r}$ which in this case gives 0 k. The tensile strain that will occur at equilibrium with the current reinforcement is illustrated below:

ε_s= 0.04124

 \checkmark ε_s ≥ ε_{min} ...utilization ratio 0.075

From the analysis, strain in extreme tension bar is 0.0412.

Deflection (Drift) Check

Applying a factor to $I_{\rm g}$ to represent the effects of cracking:

$$I_g = t_{sp} I_w^3 / 12 = (7.63 \text{ in })(12 \text{ ft })^3 / 12 = 1,897,344 \text{ in}^4$$

$$I_{eff} = C_{cr}I_{g} = (0.4)(1,897,344 \text{ in}^{4}) = 758,937.6 \text{ in}^{4}$$

 $E_m = 900f'_m = 900(1,350 \text{ psi}) = 1,215,000 \text{ psi}$

Calculate elastic deflection:

$$A_{g} = 2t_{fs}I_{w} = 2(1.25 \text{ in})(12 \text{ ft}) = 2.5 \text{ ft}^{2}$$

$$\delta_{u} = \frac{V_{u}h}{(5/6.0)A_{g}0.4E_{m}} + \frac{V_{u}h^{3}}{3E_{m}I_{eff}} = \frac{((0 \text{ k})(0.67 \text{ ft}))}{((5/6.0)(2.5 \text{ ft}^{2})0.4(1,215,000 \text{ psi}))} + \frac{((0 \text{ k})(0.67 \text{ ft})^{3})}{(3(1,215,000 \text{ psi})(758,937.6 \text{ in}^{4}))} = 0 \text{ in}$$

[Masonry Designers Guide 2013, Eqn 7.4-1 (modified form)]

Calculate inelastic deflection, taking C_d from ASCE 7 Table 12.2-1:

$$\delta_{\text{inelastic}} = C_d \delta_u = (1.75)(0 \text{ in }) = 0 \text{ in}$$

Maximum allowable deflection:

$$\delta_{max} = 0.01h = 0.01(0.67 \text{ ft}) = 0.08 \text{ in}$$

[ASCE 7-10 Table 12.12-1]

✓ δ_{max} ≥ δ_{inelastic} ...utilization ratio 0

Prescriptive Checks

Maximum Vertical Steel Spacing

For this Ordinary Reinforced Shear Wall, the maximum spacing of vertical reinforcement is:

s_{max} = 120 in

[TMS 402-16 7.3.2.3.1]

The spacing of provided distributed vertical reinforcing bars is:

s= 32 in

✓ s_{max} ≥ s ...utilization ratio 0.267

Minimum Distributed Vertical Steel Area

For this Ordinary Reinforced Shear Wall, the minimum area of vertical reinforcement is:

$A_{s min} = 0.2 in^2$

[TMS 402-16 7.3.2.3.1]

The area of provided distributed vertical reinforcing bars is:

 $A_{s} = 0.2 \text{ in}^{2}$

✓ $A_{s_{min}} \ge A_s$...utilization ratio 1

Maximum Horizontal Steel Spacing

For this Ordinary Reinforced Shear Wall, the maximum spacing of horizontal reinforcement is:

s_{max}= 120 in

[TMS 402-16 7.3.2.3.1]

The spacing of provided distributed horizontal reinforcement is:

s= 8 in

✓ $s_{max} \ge s$...utilization ratio 0.067

Minimum Distributed Horizontal Steel Area

For this Ordinary Reinforced Shear Wall, the minimum area of horizontal reinforcement is bond beam reinforcement of minimum area:

 $A_{s min} = 0.2 in^2$

[TMS 402-16 7.3.2.3.1]

The area of provided bond beam bar size is:

 $A_{c} = 0.2 \text{ in}^{2}$

✓ $A_{s_{min}} \ge A_s$...utilization ratio 1

Wall 1

Anchor Fastening Technical Guide, Edition 19

			Tension	- ΦΝ			Shear	— фV _n	
	Effective	$f'_{1} = 2,500 \text{ psi}$	f', = 3,000 ps	$f'_{1} = 4,000 \text{ ps}$	$f'_{1} = 6,000 \text{ psi}$	$f'_{1} = 2,500 \text{ psi}$	f', = 3,000 psi	$f'_{1} = 4,000 \text{ psi}$	$f'_{1} = 6,000 \text{ psi}$
	embedment	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)	(17.2 MPa)	(20.7 MPa)	(27.6 MPa)	(41.4 MPa)
Rebar size	in. (mm)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
	3-3/8	2,790	2,845	2,925	3,045	6,010	6,120	6,300	6,560
	(86)	(12.4)	(12.7)	(13.0)	(13.5)	(26.7)	(27.2)	(28.0)	(29.2)
Rebar size #3 #4 #4 #5 #6 #7 #8 #9 #10	4-1/2	3,720	3,790	3,900	4,060	8,015	8,165	8,400	8,750
#3	(114)	(16.5)	(16.9)	(17.3)	(18.1)	(35.7)	(36.3)	(37.4)	(38.9)
	7-1/2	6,205	6,315	6,500	6,770	13,360	13,605	14,005	14,580
	(191)	(27.6)	(28.1)	(28.9)	(30.1)	(59.4)	(60.5)	(62.3)	(64.9)
	4-1/2	4,960	5,055	5,200	5,415	10,690	10,885	11,200	11,665
\frown	(114)	(22.1)	(22.5)	(23.1)	(24.1)	(47.6)	(48.4)	(49.8)	(51.9)
(#A	$\left(\begin{array}{c} 6 \end{array}\right)$	6,615	6,740	6,935	7,220	14,250	14,510	14,935	15,555
#4	(152)	(29.4)	(30.0)	(30.8)	(32.1)	(63.4)	(64.5)	(66.4)	(69.2)
	10	11,025	11,230	11,560	12,035	23,750	24,185	24,895	25,925
	(254)	(49.0)	(50.0)	(51.4)	(53.5)	(105.6)	(107.6)	(110.7)	(115.3)
	5-5/8	7,370	7,970	8,200	8,540	15,875	17,165	17,665	18,395
	(143)	(32.8)	(35.5)	(36.5)	(38.0)	(70.6)	(76.4)	(78.6)	(81.8)
#5	7-1/2	10,435	10,625	10,935	11,390	22,470	22,885	23,555	24,530
#5	(191)	(46.4)	(47.3)	(48.6)	(50.7)	(100.0)	(101.8)	(104.8)	(109.1)
	12-1/2	17,390	17,710	18,225	18,980	37,455	38,145	39,255	40,880
	(318)	(77.4)	(78.8)	(81.1)	(84.4)	(166.6)	(169.7)	(174.6)	(181.8)
	6-3/4	9,690	10,615	11,810	12,300	20,870	22,860	25,440	26,490
#6	(171)	(43.1)	(47.2)	(52.5)	(54.7)	(92.8)	(101.7)	(113.2)	(117.8)
	9	14,920	15,300	15,745	16,400	32,130	32,955	33,915	35,320
	(229)	(66.4)	(68.1)	(70.0)	(73.0)	(142.9)	(146.6)	(150.9)	(157.1)
	15	25,040	25,500	26,245	27,330	53,935	54,925	56,530	58,870
	(381)	(111.4)	(113.4)	(116.7)	(121.6)	(239.9)	(244.3)	(251.5)	(261.9)
	7-7/8	11,750	11,965	12,315	12,825	25,305	25,770	26,525	27,620
	(200)	(52.3)	(53.2)	(54.8)	(57.0)	(112.6)	(114.6)	(118.0)	(122.9)
#7	10-1/2	15,665	15,955	16,420	17,100	33,740	34,360	35,365	36,830
	(267)	(69.7)	(71.0)	(73.0)	(76.1)	(150.1)	(152.8)	(157.3)	(163.8)
	17-1/2	26,110	26,590	27,365	28,500	56,235	57,270	58,940	61,380
	(445)	(116.1)	(118.3)	(121.7)	(126.8)	(250.1)	(254.7)	(262.2)	(273.0)
	9	14,920	15,720	16,180	16,850	32,130	33,860	34,850	36,295
	(229)	(66.4)	(69.9)	(72.0)	(75.0)	(142.9)	(150.6)	(155.0)	(161.4)
#8	12	20,585	20,960	21,575	22,465	44,335	45,150	46,470	48,390
	(305)	(91.6)	(93.2)	(96.0)	(99.9)	(197.2)	(200.8)	(206.7)	(215.2)
	20	34,305	34,935	35,955	37,445	73,890	75,250	77,445	80,650
	(508)	(152.6)	(155.4)	(159.9)	(166.6)	(328.7)	(334.7)	(344.5)	(358.7)
	10-1/8	17,800	19,500	20,720	21,580	38,340	42,000	44,635	46,480
	(257)	(79.2)	(86.7)	(92.2)	(96.0)	(170.5)	(186.8)	(198.5)	(206.8)
#9	13-1/2	26,360	26,845	27,630	28,775	56,780	57,825	59,510	61,975
	(343)	(117.3)	(119.4)	(122.9)	(128.0)	(252.6)	(257.2)	(264.7)	(275.7)
	22-1/2	43,935	44,745	46,050	47,955	94,630	96,370	99,185	103,290
	(572)	(195.4)	(199.0)	(204.8)	(213.3)	(420.9)	(428.7)	(441.2)	(459.5)
	11-1/4	20,850	22,840	25,585	26,640	44,905	49,190	55,105	57,385
Rebar size #3 #4 #5 #6 #7 #8 #9 #10	(286)	(92.7)	(101.6)	(113.8)	(118.5)	(199.7)	(218.8)	(245.1)	(255.3)
	15	32,095	33,145	34,110	35,525	69,135	71,385	73,470	76,510
	(381)	(142.8)	(147.4)	(151.7)	(158.0)	(307.5)	(317.5)	(326.8)	(340.3)
	25	54,240	55,240	56,850	59,205	116,830	118,980	122,450	127,515
	(635)	(241.3)	(245.7)	(252.9)	(263.4)	(519.7)	(529.2)	(544.7)	(567.2)

Table 20 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for rebar in cracked concrete^{1,2,3,4,5,6,7,8,9}

See section 3.1.8 for explanation on development of load values.

2 See section 3.1.8 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

Apply spacing, edge distance, and concrete thickness factors in tables 22 - 37 as necessary to the above values. Compare to the steel values in table 21. 4 The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 130° F (55° C), max. long term temperature = 110° F (43° C). For temperature range C: Max. short term temperature = 176° F (80° C), max. long term temperature = 110° F (43° C) multiply above values by 0.92. For temperature range C: Max. short term temperature = 248° F (120° C), max. long term temperature = 162° F (72° C) multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength by 0.85.

Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.

Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: 8 For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 9 #3 to #6 - α_{solis} = 0.60, #7 - α_{solis} = 0.64, #8 - α_{solis} = 0.68, #9 - α_{solis} = 0.71, #10 - α_{solis} = 0.75 See section 3.1.8 for additional information on seismic applications.

53

3.2.2

Table 21 - Steel design strength for US rebar^{1,2}

	AST	M A615 Grade	40 4	ASTM A615 Grade 60 ⁴				M A706 Grade	60 4
	Tensile ³ ΦN	Shear⁴ oV	Seismic⁵ Shear ΦV	Tensile ³ ΦN	Shear⁴ oV	Seismic⁵ Shear ¢V	Tensile³ ΦN	Shear⁴ oV	Seismic⁵ Shear oV
Rebar size	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)	lb (kN)
#3	4,290	2,375	1,665	6,435	3,565	2,495	6,600	3,430	2,400
	(19.1)	(10.6)	(7.4)	(28.6)	(15.9)	(11.1)	(29.4)	(15.3)	(10.7)
(#4)	7,800	4,320	3,025	(11,700)	6,480	4,535	12,000	6,240	4,370
#4	(34.7)	(19.2)	(13.4)	(52.0)	(28.8)	(20.2)	(53.4)	(27.8)	(19.5)
#5	12,090	6,695	4,685	18,135	10,045	7,030	18,600	9,670	6,770
#5	(53.8)	(29.8)	(20.9)	(80.7)	(44.7)	(31.3)	(82.7)	(43.0)	(30.1)
#6	17,160	9,505	6,655	25,740	14,255	9,980	26,400	13,730	9,610
#0	(76.3)	(42.3)	(29.6)	(114.5)	(63.4)	(44.4)	(117.4)	(61.1)	(42.8)
#7	23,400	12,960	9,070	35,100	19,440	13,610	36,000	18,720	13,105
Rebar size #3 #4 #5 #6 #7 #8 #9 #10	(104.1)	(57.6)	(40.3)	(156.1)	(86.5)	(60.6)	(160.1)	(83.3)	(58.3)
#9	30,810	17,065	11,945	46,215	25,595	17,915	47,400	24,650	17,255
#0	(137.0)	(75.9)	(53.1)	(205.6)	(113.9)	(79.7)	(210.8)	(109.6)	(76.7)
#0	39,000	21,600	15,120	58,500	32,400	22,680	60,000	31,200	21,840
Rebar size T #3 #4 #5 #6 #7 2 #8 2 #10 2	(173.5)	(96.1)	(67.3)	(260.2)	(144.1)	(100.9)	(266.9)	(138.8)	(97.2)
#10	49,530	27,430	19,200	74,295	41,150	28,805	76,200	39,625	27,740
#10	(220.3)	(122.0)	(85.4)	(330.5)	(183.0)	(128.1)	(339.0)	(176.3)	(123.4)

See Section 3.1.8 to convert design strength value to ASD value.
 ASTM A706 Grade 60 rebar are considered ductile steel elements. ASTM A615 Grade 40 and 60 rebar are considered brittle steel elements.

3 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17. 4 Shear = $\phi 0.60 A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17. 5 Seismic Shear = $\alpha_{V,seis} \phi V_{sa}$: Reduction for seismic shear only. See section 3.1.8 for additional information on seismic applications.